Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Med Chem ; 67(2): 1580-1610, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38190615

RESUMO

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Selênio , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Serotonina/uso terapêutico , Ratos Wistar , Neuroproteção , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Receptores de Serotonina , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
Antibiotics (Basel) ; 12(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37998820

RESUMO

In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (7-9) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of ß-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants.

3.
Metabolites ; 13(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999226

RESUMO

Excessive fructose consumption may lead to metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD) and hypertension. α1-adrenoceptors antagonists are antihypertensive agents that exert mild beneficial effects on the metabolic profile in hypertensive patients. However, they are no longer used as a first-line therapy for hypertension based on Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) outcomes. Later studies have shown that quinazoline-based α1-adrenolytics (prazosin, doxazosin) induce apoptosis; however, this effect was independent of α1-adrenoceptor blockade and was associated with the presence of quinazoline moiety. Recent studies showed that α1-adrenoceptors antagonists may reduce mortality in COVID-19 patients due to anti-inflammatory properties. MH-76 (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride)) is a non-quinazoline α1-adrenoceptor antagonist which, in fructose-fed rats, exerted anti-inflammatory, antihypertensive properties and reduced insulin resistance and visceral adiposity. In this study, we aimed to evaluate the effect of fructose consumption and treatment with α1-adrenoceptor antagonists of different classes (MH-76 and prazosin) on liver tissue of fructose-fed rats. Livers were collected from four groups (Control, Fructose, Fructose + MH-76 and Fructose + Prazosin) and subjected to biochemical and histopathological studies. Both α1-adrenolytics reduced macrovesicular steatosis and triglycerides content of liver tissue and improved its antioxidant capacity. Treatment with MH-76, contrary to prazosin, reduced leucocytes infiltration as well as decreased elevated IL-6 and leptin concentrations. Moreover, the MH-76 hepatotoxicity in hepatoma HepG2 cells was less than that of prazosin. The use of α1-adrenolytics with anti-inflammatory properties may be an interesting option for treatment of hypertension with metabolic complications.

4.
Eur J Med Chem ; 261: 115832, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837674

RESUMO

Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), ß-secretase (BACE1), amyloid ß aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 µM, mGAT4 IC50 = 12 µM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aß40 aggregation inhibitory activity (IC50 = 1.57 µM and 99 % at 10 µM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 µM), Aß aggregation (79 % at 10 µM) and mGATs (mGAT1 IC50 = 30 µM, mGAT4 IC50 = 25 µM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Camundongos , Animais , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Inibidores da Colinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Desenho de Fármacos , Ácido Aspártico Endopeptidases/metabolismo , Acetilcolinesterase/metabolismo
5.
ACS Omega ; 8(41): 38566-38576, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867702

RESUMO

Salsolinol (1-methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol) is a close structural analogue of dopamine with an asymmetric center at the C1 position, and its presence in vivo, both in humans and rodents, has already been proven. Yet, given the fact that salsolinol colocalizes with dopamine-rich regions and was first detected in the urine of Parkinson's disease patients, its direct role in the process of neurodegeneration has been proposed. Here, we report that R and S enantiomers of salsolinol, which we purified from commercially available racemic mixture by means of high-performance liquid chromatography, exhibited neuroprotective properties (at the concentration of 50 µM) toward the human dopaminergic SH-SY5Y neuroblastoma cell line. Furthermore, within the study, we observed no toxic effect of N-methyl-(R)-salsolinol on SH-SY5Y neuroblastoma cells up to the concentration of 750 µM, either. Additionally, our molecular docking analysis showed that enantiomers of salsolinol should exhibit a distinct ability to interact with dopamine D2 receptors. Thus, we postulate that our results highlight the need to acknowledge salsolinol as an active dopamine metabolite and to further explore the neuroregulatory role of enantiomers of salsolinol.

6.
Eur J Med Chem ; 260: 115756, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657272

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder with a complex aetiology, is the most common memory dysfunction particularly affecting the elderly. Various protein targets have been classified to be involved in the AD treatment, including 5-HT6 receptor (5-HT6R). So far, the 5-HT6R ligands obtained by our research group have become a good basis for hydrophobicity modulation to give a chance for more effective action toward AD by additional influence on target enzymes, e.g. cyclin-dependent kinase 5 (CDK5). In the search for 5-HT6R agents with additional inhibitory action on the enzyme, a series of 25 new 1,3,5-triazines (7-31) as modifications of lead, 4-[1-(2,5-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazine-2-amine (6), was rationally designed. Molecular modelling, synthesis, crystallographic studies, in vitro biological assays and behavioral studies in vivo were performed. The new triazines showed high affinity (Ki < 100 nM) and selectivity for 5-HT6R. The most effective one, 4-[1-(2,5-difluorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazine-2-amine (8), exhibited the strong antagonistic action towards 5-HT6R (Ki = 5 nM, pKb = 8.16), had an impact on the memory processes in the Novel Object Recognition test and displayed anxiolytic-like activity in the Elevated Plus Maze test in rats. Moreover, it had the antiplatelet effect as well as very good permeability (PAMPA model), high metabolic stability (RLMs) and satisfactory safety in vitro. Although the CDK5 inhibitory effects in vitro for the tested compounds (8, 10, 14, 18, 26-31) missed the potency expected from in silico simulations, the novel antagonist (8) with a very satisfying pharmacological and ADMET profile can serve as a new lead structure in further searches for innovative therapy against AD with accompanying symptoms.


Assuntos
Doença de Alzheimer , Ansiolíticos , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Serotonina , Aminas , Memória
7.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762006

RESUMO

Chronic inflammation plays an important role in the development of neurodegenerative diseases, such as Parkinson's disease (PD). In the present study, we synthesized 25 novel xanthine derivatives with variable substituents at the N1-, N3- and C8-position as adenosine receptor antagonists with potential anti-inflammatory activity. The compounds were investigated in radioligand binding studies at all four human adenosine receptor subtypes, A1, A2A, A2B and A3. Compounds showing nanomolar A2A and dual A1/A2A affinities were obtained. Three compounds, 19, 22 and 24, were selected for further studies. Docking and molecular dynamics simulation studies indicated binding poses and interactions within the orthosteric site of adenosine A1 and A2A receptors. In vitro studies confirmed the high metabolic stability of the compounds, and the absence of toxicity at concentrations of up to 12.5 µM in various cell lines (SH-SY5Y, HepG2 and BV2). Compounds 19 and 22 showed anti-inflammatory activity in vitro. In vivo studies in mice investigating carrageenan- and formalin-induced inflammation identified compound 24 as the most potent anti-inflammatory derivative. Future studies are warranted to further optimize the compounds and to explore their therapeutic potential in neurodegenerative diseases.


Assuntos
Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Inflamação , Adenosina , Carragenina
8.
Eur J Med Chem ; 259: 115695, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567058

RESUMO

Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT6 receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT6 receptor ligands. The main aim of this research is to compare the biological activity of the newly synthesized sulfur derivatives with their oxygen analogues and their N-demethylated O- and S-metabolites obtained for the first time. Most of the new triazines displayed high affinity (Ki < 200 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R, and D2R, in the radioligand binding assays. For selected, active compounds crystallographic studies, functional bioassays, and ADME-Tox profile in vitro were performed. The exciting novelty is that the sulfur derivatives exhibit an agonistic mode of action contrary to all other compounds obtained to date in this chemical class herein and previously reported. Advanced computational studies indicated that this intriguing functional shift might be caused by presence of chalcogen bonds formed only by the sulfur atom. In addition, the N-demethylated derivatives have emerged highly potent antioxidants and, moreover, show a significant improvement in metabolic stability compared to the parent structures. The cholinesterase study present micromolar inhibitory AChE and BChE activity for both 5-HT6 agonist 19 and potent antagonist 5. Finally, the behavioral experiments of compound 19 demonstrated its antidepressant-like properties and slight ability to improve cognitive deficits, without inducing memory impairments by itself. Described pharmacological properties of both compounds (5 and 19) allow to give a design clue for the development of multitarget compounds with 5-HT6 (both agonist and antagonist)/AChE and/or BChE mechanism in the group of 1,3,5-triazine derivatives.


Assuntos
Doença de Alzheimer , Calcogênios , Humanos , Doença de Alzheimer/tratamento farmacológico , Serotonina , Estrutura Molecular , Relação Estrutura-Atividade , Receptores de Serotonina/metabolismo , Ligantes , Triazinas/química , Éteres , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo
9.
ChemMedChem ; 18(18): e202300278, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37387321

RESUMO

Kainate receptors are a class of ionotropic glutamate receptors that respond to the excitatory neurotransmitter glutamate in the central nervous system and play an important role in the development of neurodegenerative disorders and the regulation of synaptic function. In the current study, we investigated the structure- activity relationship of the series of quinoxaline-2,3-diones substituted at N1, 6, and 7 positions, as ligands of kainate homomeric receptors GluK1-3 and GluK5. Pharmacological characterization showed that all derivatives obtained exhibited micromolar affinity at GluK3 receptors with Ki values in the range 0.1-4.4 µM range. The antagonistic properties of the selected analogues: N-(7-fluoro-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide, N-(7-(1H-imidazol-1-yl)-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide and N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(phenylethynyl)-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide at GluK3 receptors, were confirmed by an intracellular calcium imaging assay. To correlate in vitro affinity data with structural features of the synthesized compounds and to understand the impact of the substituent in N1 position on ability to form additional protein-ligand interactions, molecular modeling and docking studies were carried out. Experimental solubility studies using UV spectroscopy detection have shown that 7-imidazolyl-6-iodo analogues with a sulfamoylbenzamide moiety at the N1 position are the best soluble compounds in the series, with molar solubility in TRISS buffer at pH 9 more than 3-fold higher compared to NBQX, a known AMPA/kainate antagonist.


Assuntos
Ácido Caínico , Receptores de Ácido Caínico , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Quinoxalinas/farmacologia , Solubilidade , Relação Estrutura-Atividade
10.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241939

RESUMO

Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.


Assuntos
Histamina , Triazinas , Humanos , Receptores Histamínicos H4 , Triazinas/farmacologia , Triazinas/uso terapêutico , Receptores Histamínicos , Dor/tratamento farmacológico , Ligantes , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Acoplados a Proteínas G
11.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176010

RESUMO

Epilepsy is a neurological disorder involving a number of disease syndromes with a complex etiology. A properly matched antiseizure drug (ASD) gives remission in up to 70% of patients. Nevertheless, there is still a group of about 30% of patients suffering from drug-resistant epilepsy. Consequently, the development of new more effective and/or safer ASDs is still an unmet clinical need. Thus, our current studies were focused on the structural optimization/modifications of one of the leading compounds, KA-11, aiming at the improvement of its antiseizure activity. As a result, we designed and synthesized two close analogs with highly pronounced drug-like physicochemical properties according to in silico predictions, namely KA-228 and KA-232, which were subsequently tested in a panel of animal seizure models, i.e., MES, 6 Hz (32 mA), scPTZ and ivPTZ. Among these compounds, KA-232, which was designed as a water-soluble salt, was distinctly more effective than KA-228 and assured similar antiseizure protection as its chemical prototype KA-11. With the aim of a more detailed characterization of both new molecules, in vitro binding tests were performed to evaluate the potential mechanisms of action. Furthermore, KA-232 was also evaluated in several ADME-Tox studies, and the results obtained strongly supported its drug-like potential. The proposed chemical modification of KA-11 enabled the identification of new pharmacologically active chemotypes, particularly water-soluble KA-232, which, despite the lack of better efficacy than the leading compound, may be used as a chemical prototype for the development of new ASDs, as well as substances potentially active in other neurological or neurodegenerative conditions.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Modelos Animais de Doenças
12.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242458

RESUMO

This study examines the properties of novel guanidines, designed and synthesized as histamine H3R antagonists/inverse agonists with additional pharmacological targets. We evaluated their potential against two targets viz., inhibition of MDA-MB-231, and MCF-7 breast cancer cells viability and inhibition of AChE/BuChE. ADS10310 showed micromolar cytotoxicity against breast cancer cells, combined with nanomolar affinity at hH3R, and may represent a promising target for the development of an alternative method of cancer therapy. Some of the newly synthesized compounds showed moderate inhibition of BuChE in the single-digit micromolar concentration ranges. H3R antagonist with additional AChE/BuChE inhibitory effect might improve cognitive functions in Alzheimer's disease. For ADS10310, several in vitro ADME-Tox parameters were evaluated and indicated that it is a metabolically stable compound with weak hepatotoxic activity and can be accepted for further studies.

13.
Bioorg Med Chem ; 88-89: 117333, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236021

RESUMO

Butyrylcholinesterase (BuChE) and amyloid ß (Aß) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aß inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aß aggregation inhibition at 10 µM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
15.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770774

RESUMO

Since the number of people with Alzheimer's disease (AD) continues to rise, new and effective drugs are urgently needed to not only slow down the progression of the disease, but to stop or even prevent its development. Serotonin 5-HT6 receptor (5-HT6R) ligands are still a promising therapeutic target for the treatment of AD. 1,3,5-Triazine derivatives, as novel structures lacking an indole or a sulfone moiety, have proven to be potent ligands for this receptor. In present work, new derivatives of the compound MST4 (4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine), the potent 5-HT6R antagonist (Ki = 11 nM) with promising ADMET and in vivo properties, were designed. The synthesized compounds were tested for their affinity towards 5-HT6R and other receptor (off)targets (serotonin 5-HT2A, 5-HT7 and dopamine D2). Based on the new results, 4-(2-tert-butylphenoxy)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3) was selected for extended in vitro studies as a potent and selective 5-HT6R ligand (Ki = 13 nM). Its ability to permeate the blood-brain barrier (BBB) and its hepatotoxicity were evaluated. In addition, X-ray crystallography and solubility studies were also performed. The results obtained confirm that 6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine derivatives, especially compound 3, are promising structures for further pharmacological studies as 5-HT6R ligands.


Assuntos
Doença de Alzheimer , Serotonina , Humanos , Relação Estrutura-Atividade , Receptores de Serotonina/química , Doença de Alzheimer/tratamento farmacológico , Ligantes , Triazinas/química
16.
ACS Chem Neurosci ; 14(6): 1166-1180, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848624

RESUMO

Modulation of α1ß2γ2GABA-A receptor subpopulation expressed in the basal ganglia region is a conceptually novel mode of pharmacological strategy that offers prospects to tackle a variety of neurological dysfunction. Although clinical findings provided compelling evidence for the validity of this strategy, the current chemical space of molecules able to modulate the α1/γ2 interface of the GABA-A receptor is limited to imidazo[1,2-a]pyridine derivatives that undergo rapid biotransformation. In response to a deficiency in the chemical repertoire of GABA-A receptors, we identified a series of 2-(4-fluorophenyl)-1H-benzo[d]imidazoles as positive allosteric modulators (PAMs) with improved metabolic stability and reduced potential for hepatotoxicity, where lead molecules 9 and 23 displayed interesting features in a preliminary investigation. We further disclose that the identified scaffold shows a preference for interaction with the α1/γ2 interface of the GABA-A receptor, delivering several PAMs of the GABA-A receptor. The present work provides useful chemical templates to further explore the therapeutic potential of GABA-A receptor ligands and enriches the chemical space of molecules suitable for the interaction with the α1/γ2 interface.


Assuntos
Imidazóis , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Imidazóis/farmacologia , Ligantes , Regulação Alostérica
17.
Eur J Med Chem ; 249: 115135, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696766

RESUMO

The symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development. Compound (R)-29 is a potent hBuChE inhibitor (IC50 = 40 nM) with selectivity over AChE and relevant off-targets, including H1, M1, α1A and ß1 receptors. The compound displays high metabolic stability on human liver microsomes (90% of the parent compound after 2 h of incubation), and its safety was confirmed through examining the cytotoxicity on the HepG2 cell line (LC50 = 2.85 µM) and hERG inhibition (less than 50% at 10 µM). While (rac)-29 lacked an effect in vivo and showed limited penetration to the CNS in pharmacokinetics studies, compound (R)-29 exhibited a procognitive effect at 15 mg/kg in the passive avoidance task in scopolamine-treated mice.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Camundongos , Animais , Humanos , Butirilcolinesterase/metabolismo , Cristalografia , Inibidores da Colinesterase/química , Doença de Alzheimer/metabolismo , Escopolamina/farmacologia , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
18.
Neurochem Res ; 48(5): 1347-1359, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36449199

RESUMO

A dopamine derivative, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, known as salsolinol (SAL), has increasingly gained attention since its first detection in the urine of Parkinson's disease patients treated with levodopa, and has been proposed as a possible neurotoxic contributor to the disease. Yet, so far, the neurobiological role of SAL remains unclear. Thus, the main aims of our study were to compare the neurotoxic potential of SAL with MPP+ (1-methyl-4-phenylpyridinium ion) in vitro, and to examine intestinal and metabolic alterations following intraperitoneal SAL administration in vivo. In vitro, SH-SY5Y neuroblastoma cell line was monitored following MPP+ and SAL treatment. In vivo, Wistar rats were subjected to SAL administration by either osmotic intraperitoneal mini-pumps or a single intraperitoneal injection, and after two weeks, biochemical and morphological parameters were assessed. SH-SY5Y cells treated with MPP+ (1000 µM) and SAL (50 µM) showed increase in cell viability and fluorescence intensity in comparison with the cells treated with MPP+ alone. In vivo, we predominantly observed decreased collagen content in the submucosal layer, decreased neuronal density with comparable ganglionic area in the jejunal myenteric plexus, and increased glial S100 expression in both enteric plexuses, yet with no obvious signs of inflammation. Besides, glucose and triglycerides levels were lower after single SAL-treatment (200 mg/kg), and low- to high-density lipoprotein (LDL/HDL) ratio and aspartate to alanine aminotransferases (AST/ALT) ratio levels were higher after continuous SAL-treatment (200 mg/kg in total over 2 weeks). Low doses of SAL were non-toxic and exhibited pronounced neuroprotective properties against MPP+ in SH-SY5Y cell line, which supports the use of SAL as a reference compound for in vitro studies. In vivo results give insight into our understanding of gastrointestinal remodeling following intraperitoneal SAL administration, and might represent morphological correlates of a microglial-related enteric neurodegeneration and dopaminergic dysregulation.


Assuntos
1-Metil-4-fenilpiridínio , Neuroblastoma , Ratos , Animais , Humanos , 1-Metil-4-fenilpiridínio/toxicidade , Ratos Wistar , Linhagem Celular Tumoral , Dopamina , Apoptose
19.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364104

RESUMO

Serotonin 5-HT1A and 5-HT7 receptors play an important role in the pathogenesis and pharmacotherapy of depression. Previously identified N-hexyl trazodone derivatives, 2-(6-(4-(3-chlorophenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride (7a·HCl), with high affinity for 5-HT1AR and 2-(6-(4-([1,1'-biphenyl]-2-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride (7b·HCl), a dual-acting 5-HT1A/5-HT7 receptor ligand, were prepared with a new microwave-assisted method. The protocol for the synthesis of 7a and 7b involved reductive alkylation under a mild reducing agent. We produced the final compounds with yield of 56-63% using ethanol or 51-56% in solvent-free conditions in 4 min. We then determined the 5-HT7R binding mode for compounds 7a and 7b using in silico methods and assessed the preliminary ADME and safety properties (hepatotoxicity and CYP3A4 inhibition) using in vitro methods for 7a·HCl and 7b·HCl. Furthermore, we evaluated antidepressant-like activity of the dual antagonist of 5-HT1A/5-HT7 receptors (7b·HCl) in the forced swim test (FST) in mice. The 5-HT1AR ligand (7a·HCl) with a much lower affinity for 5-HT7R compared to that of 7b·HCl was tested comparatively. Both compounds showed antidepressant activity, while 5-HT1A/5-HT7 double antagonist 7b·HCl showed a stronger and more specific response.


Assuntos
Trazodona , Animais , Camundongos , Trazodona/farmacologia , Serotonina , Receptores de Serotonina/metabolismo , Ligantes , Antidepressivos/química , Receptor 5-HT1A de Serotonina , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362096

RESUMO

Considering the key functions of the 5-HT7 receptor, especially in psychiatry, and the fact that effective and selective 5-HT7 receptor ligands are yet to be available, in this work, we designed and synthesized novel 1,3,5-triazine derivatives particularly based on the evaluation of the effect of substituents at aromatic rings on biological activity. The tested compounds showed high affinity to the 5-HT7 receptor, particularly ligands N2-(2-(5-fluoro-1H-indol-3-yl)ethyl)-N4-phenethyl-1,3,5-triazine-2,4,6-triamine 2 (Ki = 8 nM) and N2-(2-(1H-indol-3-yl)ethyl)-N4-(2-((4-fluorophenyl)amino)ethyl)-1,3,5-triazine-2,4,6-triamine 12 (Ki = 18 nM) which showed moderate metabolic stability, and affinity to the CYP3A4 isoenzyme. As for the hepatotoxicity evaluation, the tested compounds showed moderate cytotoxicity only at concentrations above 50 µM. Compound 12 exhibited less cardiotoxic effect than 2 on Danio rerio in vivo model.


Assuntos
Receptores de Serotonina , Serotonina , Receptores de Serotonina/metabolismo , Ligantes , Serotonina/metabolismo , Triazinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...